Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 886
1.
J Agric Food Chem ; 72(18): 10640-10654, 2024 May 08.
Article En | MEDLINE | ID: mdl-38661066

Coronaviruses have consistently posed a major global concern in the field of livestock industry and public health. However, there is currently a lack of efficient drugs with broad-spectrum antiviral activity to address the challenges presented by emerging mutated strains or drug resistance. Additionally, the method for identifying multitarget drugs is also insufficient. Aminopeptidase N (APN) and 3C-like proteinase (3CLpro) represent promising targets for host-directed and virus-directed strategies, respectively, in the development of effective drugs against various coronaviruses. In this study, maduramycin ammonium demonstrated a broad-spectrum antiviral effect by targeting both of the proteins. The binding domains 4 Å from the ligand of both target proteins shared a structural similarity, suggesting that screening and designing drugs based on these domains might exhibit broad-spectrum and highly effective antiviral activity. Furthermore, it was identified that the polyether ionophores' ability to carry zinc ion might be one of the reasons why they were able to target APN and exhibit antiviral effect. The findings of this experiment provide novel perspectives for future drug screening and design, while also offering valuable references for the utilization of polyether ionophores in the management of livestock health.


Antiviral Agents , CD13 Antigens , Ionophores , Livestock , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Ionophores/pharmacology , Ionophores/chemistry , CD13 Antigens/metabolism , CD13 Antigens/chemistry , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Veterinary Drugs/pharmacology , Veterinary Drugs/chemistry , Coronavirus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyether Polyketides
2.
BMC Cancer ; 24(1): 369, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38519889

CD13 (APN) is an Alanyl-Aminopeptidase with diverse functions. The role of CD13 for gliomas is still unknown. In this study, data of glioma patients obtained by TCGA and CGGA databases were used to evaluate the survival rate and prognostic value of CD13 expression level. Protein expression of CD13 was confirmed by immunofluorescence staining of fresh patient tissues. Eight human glioblastoma cell lines were studied by RT-PCR, Western Blot, immunofluorescence staining and flow cytometry to define CD13 expression. Cell lines with different CD13 expression status were treated with a CD13 inhibitor, bestatin, and examined by MTT, scratch and colony formation assaysas well as by apoptosis assay and Western Blots. Bioinformatics analysis indicated that patients with high expression of CD13 had poor survival and prognosis. Additionally, CD13 protein expression was positively associated with clinical malignant characteristics. Investigated glioblastoma cell lines showed distinct expression levels and subcellular localization of CD13 with intracellular enrichment. Bestatin treatment reduced proliferation, migration and colony formation of glioma cells in a CD13-dependent manner while apoptosis was increased. In summary, CD13 has an impact on glioma patient survival and is important for the main function of specific glioma cells.


Glioblastoma , Glioma , Humans , Apoptosis , CD13 Antigens/genetics , CD13 Antigens/metabolism , Cell Line, Tumor , Glioblastoma/genetics , Glioma/genetics
3.
Vet Res Commun ; 48(1): 357-366, 2024 Feb.
Article En | MEDLINE | ID: mdl-37707657

Canine seminal plasma is a complex fluid containing proteins, peptides, enzymes, hormones as well as extracellular vesicles that are involved in many physiological and pathological processes including reproduction. We examined the expression of the extracellular vesicles surface antigens Aminopeptidase-N (CD13) and Dipeptidyl peptidase IV (CD26) by flow cytometry. For this study, third fraction of the ejaculate, from fertile adult male German Shepherd dogs, was manually collected twice, two days apart. FACS analyses revealed that CD13 and CD26 are co-expressed on the 69.3 ± 3.7% of extracellular vesicles and only a 2.0 ± 0.5% of extracellular vesicles express CD26 alone. On the other hand, 28.6 ± 3.6% of seminal EVs express CD13 alone. Our results agree with the hypothesis that CD26 needs to be co-expressed with other signal-transducing molecules, while CD13, can perform functions independently of the presence or co-expression of CD26. The results obtained in normal fertile dogs could represent physiological expression of these enzymes. Therefore, it would be interesting to carry out further studies to evaluate the expression of CD13 and CD26 on extracellular vesicles as biomarker for prostate pathological condition in dogs.


Dipeptidyl Peptidase 4 , Semen , Dogs , Male , Animals , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , CD13 Antigens/genetics , CD13 Antigens/metabolism , Flow Cytometry/veterinary
4.
Virus Res ; 340: 199303, 2024 Feb.
Article En | MEDLINE | ID: mdl-38145807

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus (CoV) that mainly causes acute diarrhea/vomiting, dehydration, and mortality in piglets, possessing economic losses and public health concerns. However, there are currently no proven effective antiviral agents against PDCoV. Cepharanthine (CEP) is a naturally occurring alkaloid used as a traditional remedy for radiation-induced symptoms, but its underlying mechanism of CEP against PDCoV has remained elusive. The aim of this study was to investigate the anti-PDCoV effects and mechanisms of CEP in LLC-PK1 cells. The results showed that the antiviral activity of CEP was based on direct action on cells, preventing the virus from attaching to host cells and virus replication. Importantly, Surface Plasmon Resonance (SPR) results showed that CEP has a moderate affinity to PDCoV receptor, porcine aminopeptidase N (pAPN) protein. AutoDock predicted that CEP can form hydrogen bonds with amino acid residues (R740, N783, and R790) in the binding regions of PDCoV and pAPN. In addition, RT-PCR results showed that CEP treatment could significantly reduce the transcription of ZBP1, cytokine (IL-1ß and IFN-α) and chemokine genes (CCL-2, CCL-4, CCL-5, CXCL-2, CXCL-8, and CXCL-10) induced by PDCoV. Western blot analysis revealed that CEP could inhibit viral replication by inducing autophagy. In conclusion, our results suggest that the anti-PDCoV activity of CEP is not only relies on competing the virus binding with pAPN, but also affects the proliferation of the virus in vitro by downregulating the excessive immune response caused by the virus and inducing autophagy. CEP emerges as a promising candidate for potential anti-PDCoV therapeutic development.


Benzodioxoles , Benzylisoquinolines , Coronavirus Infections , Coronavirus , Deltacoronavirus , Swine Diseases , Animals , Swine , Coronavirus/genetics , CD13 Antigens/metabolism
5.
Cancer Sci ; 114(12): 4763-4769, 2023 Dec.
Article En | MEDLINE | ID: mdl-37858605

The phosphorylated form of histone H2AX (γ-H2AX) serves as a commonly utilized biomarker for DNA damage. Based on our previous findings, which demonstrated the formation of γ-H2AX foci as a reliable biomarker for detecting bladder carcinogens in repeated dose 28-day study in rats, we hypothesized that γ-H2AX could also function as a biomarker for detecting hepatocarcinogens. However, we found that γ-H2AX foci formation was not effectively induced by hepatocarcinogens that did not stimulate hepatocyte proliferation. Therefore, we explored alternative biomarkers to detect chemical hepatocarcinogenicity and discovered increased expressions of epithelial cell adhesion molecule (EpCAM/CD326)- and aminopeptidase N (APN/CD13) in the hepatocytes of rats administered various hepatocarcinogens. Significant increases in EpCAM- and APN-positive hepatocytes were observed for eight and five of the 10 hepatocarcinogens, respectively. Notably, five and two of them, respectively, were negative for γ-H2AX foci. These results highlight the potential of EpCAM and APN as useful biomarkers in combination with γ-H2AX for the detection of chemical hepatocarcinogenicity.


Biomarkers , CD13 Antigens , Carcinogens , Epithelial Cell Adhesion Molecule , Phosphoproteins , Animals , Rats , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , CD13 Antigens/genetics , CD13 Antigens/metabolism , Phosphoproteins/metabolism , Male , Carcinogens/analysis , Carcinogens/toxicity , Gene Expression Regulation, Neoplastic/drug effects , Biomarkers/analysis
6.
J Virol ; 97(9): e0060123, 2023 09 28.
Article En | MEDLINE | ID: mdl-37676001

Canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018) was recently isolated from a child with pneumonia. This novel human pathogen resulted from cross-species transmission of a canine coronavirus. It has been known that CCoV-HuPn-2018 uses aminopeptidase N (APN) from canines, felines, and porcines, but not humans, as functional receptors for cell entry. The molecular mechanism of cell entry in CCoV-HuPn-2018 remains poorly understood. In this study, we demonstrated that among the nine APN orthologs tested, the APN of the Mexican free-tailed bat could also efficiently support CCoV-HuPn-2018 spike (S) protein-mediated entry, raising the possibility that bats may also be an alternative host epidemiologically important for the transmission of this virus. The glycosylation at residue N747 of canine APN is critical for its receptor activity. The gain of glycosylation at the corresponding residues in human and rabbit APNs converted them to functional receptors for CCoV-HuPn-2018. Interestingly, the CCoV-HuPn-2018 spike protein pseudotyped virus infected multiple human cancer cell lines in a human APN-independent manner, whereas sialic acid appeared to facilitate the entry of the pseudotyped virus into human cancer cells. Moreover, while host cell surface proteases trypsin and TMPRSS2 did not promote the entry of CCoV-HuPn-2018, endosomal proteases cathepsin L and B are required for the entry of CCoV-HuPn-2018 in a pH-dependent manner. IFITMs and LY6E are host restriction factors for the CCoV-HuPn-2018 entry. Our results thus suggest that CCoV-HuPn-2018 has not yet evolved to be an efficient human pathogen. Collectively, this study helps us understand the cell tropism, receptor usage, cross-species transmission, natural reservoir, and pathogenesis of this potential human coronavirus. IMPORTANCE Viral entry is driven by the interaction between the viral spike protein and its specific cellular receptor, which determines cell tropism and host range and is the major constraint to interspecies transmission of coronaviruses. Aminopeptidase N (APN; also called CD13) is a cellular receptor for HCoV-229E, the newly discovered canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018), and many other animal alphacoronaviruses. We examined the receptor activity of nine APN orthologs and found that CCoV-HuPn-2018 utilizes APN from a broad range of animal species, including bats but not humans, to enter host cells. To our surprise, we found that CCoV-HuPn-2018 spike protein pseudotyped viral particles successfully infected multiple human hepatoma-derived cell lines and a lung cancer cell line, which is independent of the expression of human APN. Our findings thus provide mechanistic insight into the natural hosts and interspecies transmission of CCoV-HuPn-2018-like coronaviruses.


CD13 Antigens , Coronavirus Infections , Spike Glycoprotein, Coronavirus , Virus Internalization , Animals , Dogs , Humans , Rabbits , CD13 Antigens/metabolism , Chiroptera/virology , Coronavirus/physiology , Pneumonia , Spike Glycoprotein, Coronavirus/metabolism
7.
ACS Sens ; 8(7): 2791-2798, 2023 07 28.
Article En | MEDLINE | ID: mdl-37405930

Aminopeptidase N (APN), a transmembrane ectoenzyme, plays multifunctional roles in cell survival and migration, angiogenesis, blood pressure regulation, and viral uptake. Abnormally high levels of the enzyme can be found in some tumors and injured liver and kidney. Therefore, noninvasive detection methods for APN are in demand for diagnosing and studying the associated diseases, leading to two dozen activatable small-molecule probes reported up to date. All of the known probes, however, analyze the enzyme activity by monitoring fluorescent molecules inside cells, despite the enzymatic reaction taking place on the outer cell membrane. In this case, different cell permeability and enzyme kinetics can cause false signal data. To address this critical issue, we have developed two cell-membrane-localizing APN probes whose enzymatic products also localize the outer cell membrane. The probes selectively respond to APN with ratiometric fluorescence signal changes. A selected probe, which has two-photon imaging capability, allowed us to determine the relative APN levels in various organ tissues for the first time: 4.3 (intestine), 2.1 (kidney), 2.7 (liver), 3.2 (lung), and 1.0 (stomach). Also, a higher APN level was observed from a HepG2-xenograft mouse tissue in comparison with the normal tissue. Furthermore, we observed a significant APN level increase in the mouse liver of a drug (acetaminophen)-induced liver injury model. The probe thus offers a reliable means for studying APN-associated biology including drug-induced hepatotoxicity simply by ratiometric imaging.


CD13 Antigens , Humans , Animals , Mice , CD13 Antigens/metabolism , Fluorescence , Cell Membrane/metabolism , Biological Transport
8.
Bull Entomol Res ; 113(5): 615-625, 2023 Oct.
Article En | MEDLINE | ID: mdl-37466033

Rhynchophorus ferrugineus is a quarantine pest that mainly damages plants in tropical regions, which are essential economic resources. Cry3Aa has been used to control coleopteran pests and is known to be toxic to R. ferrugineus. The binding of the Cry toxin to specific receptors on the target insect plays a crucial role in the toxicological mechanism of Cry toxins. However, in the case of R. ferrugineus, the nature and identity of the receptor proteins involved remain unknown. In the present study, pull-down assays and mass spectrometry were used to identify two proteins of aminopeptidase N proteins (RfAPN2a and RfAPN2b) in the larval midguts of R. ferrugineus. Cry3Aa was able to bind to RfAPN2a (Kd = 108.5 nM) and RfAPN2b (Kd = 68.2 nM), as well as midgut brush border membrane vesicles (Kd = 482.5 nM). In silico analysis of both RfAPN proteins included the signal peptide and anchored sites for glycosyl phosphatidyl inositol. In addition, RfAPN2a and RfAPN2b were expressed in the human embryonic kidney 293T cell line, and cytotoxicity assays showed that the transgenic cells were not susceptible to activated Cry3Aa. Our results show that RfAPN2a and RfAPN2b are Cry3Aa-binding proteins involved in the Cry3Aa toxicity of R. ferrugineus. This study deepens our understanding of the action mechanism of Cry3Aa in R. ferrugineus larvae.


Bacillus thuringiensis , Coleoptera , Weevils , Humans , Animals , Coleoptera/metabolism , Weevils/metabolism , CD13 Antigens/metabolism , Endotoxins/metabolism , Endotoxins/toxicity , Larva/metabolism , Hemolysin Proteins/metabolism , Hemolysin Proteins/toxicity , Bacterial Proteins/metabolism , Bacterial Proteins/toxicity
9.
Cancer Med ; 12(8): 9615-9626, 2023 04.
Article En | MEDLINE | ID: mdl-36951610

BACKGROUND: Cross-lineage expression of the myeloid-associated antigens CD13/CD33 is common in adult B-lymphoblastic leukemia (B-ALL) patients, yet its prognostic value is still controversial. METHODS: We conducted a retrospective study of 1005 de novo adult B-ALL patients from January 2009 to December 2019 in our hospital. Logistic and Cox regression were used to analyze the prognostic value of CD13/CD33 expression in B-ALL. A Cox regression model was established to predict overall survival (OS) for B-ALL patients. RESULTS: Of the 1005 B-ALL patients, 53.7% (n = 540) aberrantly expressed CD13/CD33 (CD13/CD33+ ). Patients in the CD13/CD33+ group showed a higher incidence of BCR::ABL1 rearrangement and minimal/measurable residual disease (MRD) positivity but similar complete remission rate, relapse-free survival, mortality, and OS with CD13/CD33- . CD13/CD33+ patients had a higher risk of MRD positivity than CD13/CD33- patients. Notably, CD13/CD33+ patients who underwent tyrosine kinase inhibitor (TKI) therapy had a better long-term prognosis than those without TKI experience. Sex, group based on CD13/CD33 expression and TKI experience and white blood cell count were variables independently associated with OS. The Cox regression model integrating these three variables showed a moderate performance for OS prediction (C-index: 0.724). CONCLUSIONS: In real-world practice, CD13/CD33 expression can predict the risk of MRD in patients without TKI experience, but has no adverse effect on the prognosis of adult B-ALL patients. Incorporating CD13/CD33 into the standard antibody panels of B-ALL diagnosis and MRD measurements can help predict relapse risk and decisions on therapy options.


Lymphoma, Non-Hodgkin , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Adult , Prognosis , Antigens, CD/metabolism , Retrospective Studies , CD13 Antigens/metabolism , Acute Disease , Sialic Acid Binding Ig-like Lectin 3
10.
Food Res Int ; 164: 112326, 2023 02.
Article En | MEDLINE | ID: mdl-36737918

Despite the physiological importance of the hydrolases from the intestinal brush border membrane (BBM), a step simulating the intestinal digestion has not been included yet in the harmonized protocols of in vitro digestion, due to commercial unavailability of these enzymes and lack of consensus for the conditions of use. The proper utilize of BBM requires a detailed investigation of their enzymatic composition. BBM vesicles were purified from specimens of pig jejunum optimizing previously described methods and assayed for aminopeptidase N and dipeptidyl peptidase IV activity. Large-scale proteomics was carried out with a bottom-up shotgun approach, also performing a rough quantification with the iBAQ (intensity Based Absolute Quantification). Overall, 1428 proteins were identified and functionally classified by gene ontology enrichment analysis. The predominant enzyme fraction (220 gene products) was represented by hydrolases, including peptidases, glycosidases, and lipases. Aminopeptidase N and sucrase-isomaltase represented 52.9 % and 50.2 % of the peptidase and glycosidase abundance, respectively. In addition to expected transporters and cytoskeletal actin-binding proteins, purified BBM vesicles also contains a complex array of protease inhibitors, here described for the first time, that may modulate the activity of hydrolases. Considering the similarity with the human counterpart, intestinal porcine BBM are suited for simulating the human small intestinal digestion.


CD13 Antigens , Jejunum , Humans , Animals , Swine , Jejunum/metabolism , Microvilli/metabolism , CD13 Antigens/metabolism , Aminopeptidases/analysis , Aminopeptidases/metabolism , Proteomics , Peptide Hydrolases/metabolism , Digestion
11.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article En | MEDLINE | ID: mdl-36835408

Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor for PEDV, but it has been found that PEDV can infect pAPN knockout pigs. Currently, the functional receptor for PEDV remains unspecified. In the present study, we performed virus overlay protein binding assay (VOPBA), found that ATP1A1 was the highest scoring protein in the mass spectrometry results, and confirmed that the CT structural domain of ATP1A1 interacts with PEDV S1. First, we investigated the effect of ATP1A1 on PEDV replication. Inhibition of hosts ATP1A1 protein expression using small interfering RNA (siRNAs) significantly reduced the cells susceptibility to PEDV. The ATP1A1-specific inhibitors Ouabain (a cardiac steroid) and PST2238 (a digitalis toxin derivative), which specifically bind ATP1A1, could block the ATP1A1 protein internalization and degradation, and consequently reduce the infection rate of host cells by PEDV significantly. Additionally, as expected, overexpression of ATP1A1 notably enhanced PEDV infection. Next, we observed that PEDV infection of target cells resulted in upregulation of ATP1A1 at the mRNA and protein levels. Furthermore, we found that the host protein ATP1A1 was involved in PEDV attachment and co-localized with PEDV S1 protein in the early stage of infection. In addition, pretreatment of IPEC-J2 and Vero-E6 cells with ATP1A1 mAb significantly reduced PEDV attachment. Our observations provided a perspective on identifying key factors in PEDV infection, and may provide valuable targets for PEDV infection, PEDV functional receptor, related pathogenesis, and the development of new antiviral drugs.


Coronavirus Infections , Host-Pathogen Interactions , Porcine epidemic diarrhea virus , Sodium-Potassium-Exchanging ATPase , Swine Diseases , Animals , CD13 Antigens/metabolism , Chlorocebus aethiops , Porcine epidemic diarrhea virus/physiology , Receptors, Virus/metabolism , RNA, Double-Stranded , RNA, Small Interfering , Swine , Swine Diseases/metabolism , Vero Cells , Virus Attachment , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Sodium-Potassium-Exchanging ATPase/metabolism
12.
J Virol ; 97(2): e0194722, 2023 02 28.
Article En | MEDLINE | ID: mdl-36656013

Members of deltacoronavirus (DCoV) have mostly been identified in diverse avian species as natural reservoirs, though the porcine DCoV (PDCoV) is a major swine enteropathogenic virus with global spread. The important role of aminopeptidase N (APN) orthologues from various mammalian and avian species in PDCoV cellular entry and interspecies transmission has been revealed recently. In this study, comparative analysis indicated that three avian DCoVs, bulbul DCoV HKU11, munia DCoV HKU13, and sparrow DCoV HKU17 (Chinese strain), and PDCoV in the subgenera Buldecovirus are grouped together at whole-genome levels; however, the spike (S) glycoprotein and its S1 subunit of HKU17 are more closely related to night heron DCoV HKU19 in Herdecovirus. Nevertheless, the S1 protein of HKU11, HKU13, or HKU17 bound to or interacted with chicken APN (chAPN) or porcine APN (pAPN) by flow cytometry analysis of cell surface expression of APN and by coimmunoprecipitation in APN-overexpressing cells. Expression of chAPN or pAPN allowed entry of pseudotyped lentiviruses with the S proteins from HKU11, HKU13 and HKU17 into nonsusceptible cells and natural avian and porcine cells, which could be inhibited by the antibody against APN or anti-PDCoV-S1. APN knockdown by siRNA or knockout by CRISPR/Cas9 in chicken or swine cell lines significantly or almost completely blocked infection of these pseudoviruses. Hence, we demonstrate that HKU11, HKU13, and HKU17 with divergent S genes likely engage chAPN or pAPN to enter the cells, suggesting a potential interspecies transmission from wild birds to poultry and from birds to mammals by certain avian DCoVs. IMPORTANCE The receptor usage of avian deltacoronaviruses (DCoVs) has not been investigated thus far, though porcine deltacoronavirus (PDCoV) has been shown to utilize aminopeptidase N (APN) as a cell receptor. We report here that chicken or porcine APN also mediates cellular entry by three avian DCoV (HKU11, HKU13, and HKU17) spike pseudoviruses, and the S1 subunit of three avian DCoVs binds to APN in vitro and in the surface of avian and porcine cells. The results fill the gaps in knowledge about the avian DCoV receptor and elucidate important insights for the monitoring and prevention of potential interspecies transmission of certain avian DCoVs. In view of the diversity of DCoVs, whether this coronavirus genus will cause novel virus to emerge in other mammals from birds, are worthy of further surveillance and investigation.


CD13 Antigens , Deltacoronavirus , Spike Glycoprotein, Coronavirus , Virus Internalization , Animals , CD13 Antigens/genetics , CD13 Antigens/metabolism , Chickens/metabolism , Coronavirus Infections , Deltacoronavirus/metabolism , Swine , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Lentivirus/genetics , Lentivirus/metabolism
13.
J Econ Entomol ; 116(1): 223-232, 2023 02 10.
Article En | MEDLINE | ID: mdl-36421056

Spodoptera litura is one of the most destructive lepidopteran insects of cabbages and cauliflowers in the world. Cry1 and Vip3 toxins from Bacillus thuringiensis have been reported to show toxicity in multiple lepidopteran insects. Binding of toxic molecules to specific receptors on the midgut epithelial cells is known to be a key step in the action mode of Bt toxins. Aminopeptidase N (APN) -like proteins have been reported to be binding sites of multiple Cry toxins in the midgut of Cry susceptible insects. In the present study, we identified six midgut APNs by analysis of the genome and midgut transcriptome of S. litura. CRISPR/Cas9 mediated gene-knockout system was utilized to mutate the GPI-anchor signal peptide at the C terminus of SlAPN1. SlAPN1 was verified to be removed from the midgut brush border membrane vesicles of a homozygous knockout strain of S. litura (SlAPN1-KO). Bioassay results indicated that susceptibility of the SlAPN1-KO strain to Cry1Aa, Cry1Ac, Cry1Ca, and Vip3Aa toxins was close to that of the wild-type strain of S. litura. RT-qPCR results showed that the transcriptional level of SlAPN2-6 was not up-regulated after knockout of the SlAPN1. Results in this study indicated that the SlAPN1 did not play a critical role in the pathway of toxicity of Cry1Aa, Cry1Ac, Cry1Ca, and Vip3Aa toxins in S. litura.


Bacillaceae , Bacillales , Bacillus thuringiensis , Insecticides , Moths , Animals , Spodoptera , Bacillus thuringiensis/genetics , Bacillus thuringiensis/chemistry , Larva/genetics , Insecticides/pharmacology , Insecticides/metabolism , CD13 Antigens/genetics , CD13 Antigens/metabolism , Bacillaceae/metabolism , Bacillales/metabolism , Microvilli/metabolism , Bacterial Proteins/pharmacology , Moths/genetics , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology
14.
Mol Cell Proteomics ; 21(11): 100424, 2022 11.
Article En | MEDLINE | ID: mdl-36220603

Astrocytes are major supportive glia and immune modulators in the brain; they are highly secretory in nature and interact with other cell types via their secreted proteomes. To understand how astrocytes communicate during neuroinflammation, we profiled the secretome of human astrocytes following stimulation with proinflammatory factors. A total of 149 proteins were significantly upregulated in stimulated astrocytes, and a bioinformatics analysis of the astrocyte secretome revealed that the brain renin-angiotensin system (RAS) is an important mechanism of astrocyte communication. We observed that the levels of soluble form of aminopeptidase N (sANPEP), an RAS component that converts angiotensin (Ang) III to Ang IV in a neuroinflammatory milieu, significantly increased in the astrocyte secretome. To elucidate the role of sANPEP and Ang IV in neuroinflammation, we first evaluated the expression of Ang IV receptors in human glial cells because Ang IV mediates biological effects through its receptors. The expression of angiotensin type 1 receptor was considerably upregulated in activated human microglial cells but not in human astrocytes. Moreover, interleukin-1ß release from human microglial cells was synergistically increased by cotreatment with sANPEP and its substrate, Ang III, suggesting the proinflammatory action of Ang IV generated by sANPEP. In a mouse neuroinflammation model, brain microglial activation and proinflammatory cytokine expression levels were increased by intracerebroventricular injection of sANPEP and attenuated by an enzymatic inhibitor and neutralizing antibody against sANPEP. Collectively, our results indicate that astrocytic sANPEP-induced increase in Ang IV exacerbates neuroinflammation by interacting with microglial proinflammatory receptor angiotensin type 1 receptor, highlighting an important role of indirect crosstalk between astrocytes and microglia through the brain RAS in neuroinflammation.


Astrocytes , Microglia , Animals , Mice , Humans , Microglia/metabolism , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System , CD13 Antigens/metabolism , Neuroinflammatory Diseases , Brain/metabolism , Disease Models, Animal
15.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article En | MEDLINE | ID: mdl-36077208

Aminopeptidase N (APN), also known as CD13 antigen or membrane alanyl aminopeptidase, belongs to the M1 family of the MA clan of zinc metallopeptidases. In cancer cells, the inhibition of aminopeptidases including APN causes the phenomenon termed the amino acid deprivation response (AADR), a stress response characterized by the upregulation of amino acid transporters and synthetic enzymes and activation of stress-related pathways such as nuclear factor kB (NFkB) and other pro-apoptotic regulators, which leads to cancer cell death by apoptosis. Recently, APN inhibition has been shown to augment DR4-induced tumor cell death and thus overcome resistance to cancer treatment with DR4-ligand TRAIL, which is available as a recombinant soluble form dulanermin. This implies that APN inhibitors could serve as potential weapons for overcoming cancer treatment resistance. In this study, a series of basically substituted acetamidophenones and the semicarbazones and thiosemicarbazones derived from them were prepared, for which APN inhibitory activity was determined. In addition, a selective anti-proliferative activity against cancer cells expressing APN was demonstrated. Our semicarbazones and thiosemicarbazones are the first compounds of these structural types of Schiff bases that were reported to inhibit not only a zinc-dependent aminopeptidase of the M1 family but also a metalloenzyme.


Neoplasms , Semicarbazones , Thiosemicarbazones , Aminopeptidases , CD13 Antigens/metabolism , Humans , Neoplasms/drug therapy , Zinc/pharmacology
16.
J Med Virol ; 94(12): 5723-5738, 2022 12.
Article En | MEDLINE | ID: mdl-35927214

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in suckling piglets and has the potential for cross-species transmission, posing a threat to animal and human health. However, the susceptibility profile of different species of mice to PDCoV infection and its evolutionary characteristics are still unclear. In the current study, we found that BALB/c and Kunming mice are susceptible to PDCoV. Our results showed that there were obvious lesions in intestinal and lung tissues from the infected mice. PDCoV RNAs were detected in the lung, kidney, and intestinal tissues from the infected mice of both strains, and there existed wider tissue tropism in the PDCoV-infected BALB/c mice. The RNA and protein levels of aminopeptidase N from mice were relatively high in the kidney and intestinal tissues and obviously increased after PDCoV infection. The viral-specific IgG and neutralizing antibodies against PDCoV were detected in the serum of infected mice. An interesting finding was that two key amino acid mutations, D138H and Q641K, in the S protein were identified in the PDCoV-infected mice. The essential roles of these two mutations for PDCoV-adaptive evolution were confirmed by cryo-electron microscope structure model analysis. The evolutionary characteristics of PDCoV among Deltacoronaviruses (δ-CoVs) were further analyzed. δ-CoVs from multiple mammals are closely related based on the phylogenetic analysis. The codon usage analysis demonstrated that similar codon usage patterns were used by most of the mammalian δ-CoVs at the global codon, synonymous codon, and amino acid usage levels. These results may provide more insights into the evolution, host ranges, and cross-species potential of PDCoV.


COVID-19 , Swine Diseases , Amino Acids , Animals , Antibodies, Neutralizing , CD13 Antigens/genetics , CD13 Antigens/metabolism , Deltacoronavirus , Humans , Immunoglobulin G , Mammals/metabolism , Mice , Phylogeny , RNA , Swine
17.
Front Immunol ; 13: 925922, 2022.
Article En | MEDLINE | ID: mdl-35837396

Although feline coronavirus (FCoV) infection is extremely common in cats, there are currently few effective treatments. A peptide derived from the heptad repeat 2 (HR2) domain of the coronavirus (CoV) spike protein has shown effective for inhibition of various human and animal CoVs in vitro, but further use of FCoV-HR2 in vivo has been limited by lack of practical delivery vectors and small animal infection model. To overcome these technical challenges, we first constructed a recombinant Bacillus subtilis (rBSCotB-HR2P) expressing spore coat protein B (CotB) fused to an HR2-derived peptide (HR2P) from a serotype II feline enteric CoV (FECV). Immunogenic capacity was evaluated in mice after intragastric or intranasal administration, showing that recombinant spores could trigger strong specific cellular and humoral immune responses. Furthermore, we developed a novel mouse model for FECV infection by transduction with its primary receptor (feline aminopeptidase N) using an E1/E3-deleted adenovirus type 5 vector. This model can be used to study the antiviral immune response and evaluate vaccines or drugs, and is an applicable choice to replace cats for the study of FECV. Oral administration of rBSCotB-HR2P in this mouse model effectively protected against FECV challenge and significantly reduced pathology in the digestive tract. Owing to its safety, low cost, and probiotic features, rBSCotB-HR2P is a promising oral vaccine candidate for use against FECV/FCoV infection in cats.


Coronavirus Infections , Coronavirus, Feline , Animals , Bacillus subtilis/genetics , CD13 Antigens/metabolism , Cats , Coronavirus, Feline/genetics , Coronavirus, Feline/metabolism , Disease Models, Animal , Humans , Immunity , Mice , Peptides/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Spores, Bacterial/genetics
18.
Cell ; 185(13): 2279-2291.e17, 2022 06 23.
Article En | MEDLINE | ID: mdl-35700730

The isolation of CCoV-HuPn-2018 from a child respiratory swab indicates that more coronaviruses are spilling over to humans than previously appreciated. We determined the structures of the CCoV-HuPn-2018 spike glycoprotein trimer in two distinct conformational states and showed that its domain 0 recognizes sialosides. We identified that the CCoV-HuPn-2018 spike binds canine, feline, and porcine aminopeptidase N (APN) orthologs, which serve as entry receptors, and determined the structure of the receptor-binding B domain in complex with canine APN. The introduction of an oligosaccharide at position N739 of human APN renders cells susceptible to CCoV-HuPn-2018 spike-mediated entry, suggesting that single-nucleotide polymorphisms might account for viral detection in some individuals. Human polyclonal plasma antibodies elicited by HCoV-229E infection and a porcine coronavirus monoclonal antibody inhibit CCoV-HuPn-2018 spike-mediated entry, underscoring the cross-neutralizing activity among ɑ-coronaviruses. These data pave the way for vaccine and therapeutic development targeting this zoonotic pathogen representing the eighth human-infecting coronavirus.


Coronavirus 229E, Human , Coronavirus Infections , Coronavirus , Animals , CD13 Antigens/chemistry , CD13 Antigens/metabolism , Cats , Cell Line , Coronavirus/metabolism , Coronavirus 229E, Human/metabolism , Dogs , Humans , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Swine
19.
J Clin Invest ; 132(11)2022 06 01.
Article En | MEDLINE | ID: mdl-35439173

CD13, an ectoenzyme on myeloid and stromal cells, also circulates as a shed, soluble protein (sCD13) with powerful chemoattractant, angiogenic, and arthritogenic properties, which require engagement of a G protein-coupled receptor (GPCR). Here we identify the GPCR that mediates sCD13 arthritogenic actions as the bradykinin receptor B1 (B1R). Immunofluorescence and immunoblotting verified high expression of B1R in rheumatoid arthritis (RA) synovial tissue and fibroblast-like synoviocytes (FLSs), and demonstrated binding of sCD13 to B1R. Chemotaxis, and phosphorylation of Erk1/2, induced by sCD13, were inhibited by B1R antagonists. In ex vivo RA synovial tissue organ cultures, a B1R antagonist reduced secretion of inflammatory cytokines. Several mouse arthritis models, including serum transfer, antigen-induced, and local innate immune stimulation arthritis models, were attenuated in Cd13-/- and B1R-/- mice and were alleviated by B1R antagonism. These results establish a CD13/B1R axis in the pathogenesis of inflammatory arthritis and identify B1R as a compelling therapeutic target in RA and potentially other inflammatory diseases.


Arthritis, Rheumatoid , CD13 Antigens/metabolism , Synoviocytes , Animals , Arthritis, Rheumatoid/pathology , Bradykinin/metabolism , Bradykinin/pharmacology , Disease Models, Animal , Fibroblasts/metabolism , Mice , Receptor, Bradykinin B1/genetics , Receptor, Bradykinin B1/metabolism , Receptors, G-Protein-Coupled/metabolism , Synovial Membrane/pathology , Synoviocytes/metabolism
20.
In Vivo ; 36(2): 657-666, 2022.
Article En | MEDLINE | ID: mdl-35241519

BACKGROUND/AIM: Previous studies have already shown that 68Gallium(68Ga)-labeled NGR-based radiopharmaceuticals specifically bind to the neoangiogenic molecule Aminopeptidase N (APN/CD13). The aim of this study was to evaluate the applicability of 68Ga-NOTA-c(NGR) in the in vivo detection of the temporal changes of APN/CD13 expression in the diabetic retinopathy rat model using positron emission tomography (PET). MATERIALS AND METHODS: Ischemia/reperfusion injury was initiated by surgical ligation of the left bulbus oculi of rats. In vivo PET imaging studies were performed after the surgery using 68Ga-NOTA-c(NGR). RESULTS: Significantly higher 68Ga-NOTA-c(NGR) uptake was observed in the surgically-ligated left bulbus, compared to the bulbus of the non-surgical group at each investigated time point. The western blot and histological analysis confirmed the increased expression of the neo-angiogenic marker APN/CD13. CONCLUSION: 68Ga-NOTA-c(NGR) is a suitable radiotracer for the detection of the temporal changes of the ischemia/reperfusion-mediated expression of APN/CD13 in the surgically induced diabetic retinopathy rat model.


CD13 Antigens , Gallium Radioisotopes , Animals , CD13 Antigens/metabolism , Cell Line, Tumor , Heterocyclic Compounds, 1-Ring , Ischemia , Positron-Emission Tomography/methods , Rats , Reperfusion
...